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Chapter 6:  Sample Size for Biological Studies

Roger N. Lockwood and Daniel B. Hayes

The goals of this chapter are to provide fisheries personnel with a better understanding of sampling
issues related to data collection and to present methods for determining appropriate sample sizes.
Much of this chapter is devoted to a discussion of variability in data since, essential to any data
collection, is an appreciation of variability.  This variability greatly affects our ability to show
differences between groups (e.g., years, lakes, etc.).  For example, if we consistently catch 10 fish per
net lift every year it would be relatively easy to see an increase to 15 fish per net lift.  However, if our
catch varied from 1 to 50 per lift (still averaging 10 fish), it would be much more difficult to detect an
increase to 15 fish per lift.

Data may be collected to characterize population parameters for descriptive purposes, or as part of a
research or management study in which some type of “treatment” is administered and some level of
change (either an increase or decrease) is anticipated.  The variables measured may be continuous
(e.g., length of fish at a chosen age) or discrete (e.g., fin ray count).

This chapter presents various methods for estimating sample size corresponding to desired precision
or power, given some prior measure or estimate of variability.  These methods presume that the data
at hand are approximately normally distributed for continuous variables, or binomially distributed for
discrete variables.  As data deviate from these assumptions, transformation of the data or different
statistical methods become necessary.

Also included in this chapter is a discussion of bias associated with estimation of average fish length
from average weight using weight-length regression.  Appropriate methods to compensate for this
bias are presented.

6.1 Precision

Precision is a measure of variability associated with a sample from a population compared to a
descriptive statistic, such as the mean, of that sample.  Variability is usually displayed in terms of
standard deviations or standard errors.  Standard deviation (s) is the variability of individual measures
within a sample compared to the mean x of that sample and is calculated as:
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where, n is the sample size and xi are the individual measures.  From a normal distribution, plus or
minus one standard deviation encompasses about 68% of all values and two standard deviations about
95%.
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The standard error ( xs ) is calculated as:

n
s

nn
n

x
x

s

n

i
in

i
i

x =
−

�
�

�
�
�

�

−
=

�
�

=

=

)1(

2

1

1

2

, (2)

and measures the variability of the mean through repeated samples. That is, if we randomly sampled a
population again and again, we would expect about 68% of the means to fall within one standard
error of the grand mean (average of all the means) and about 95% within two standard errors.  This is
one way to express confidence intervals for a mean.  Another way is as a percent error or relative
error.  For example, we may wish to calculate a mean with two standard errors being 25% of that
mean.  Expressed this way, the relative error L (error relative to the mean) is the product of the
sample mean and precision p:

pxL = , (3)

where, the precision p is expressed as a fraction, say 0.25 or 25%.

To estimate an appropriate sample size (n), we need level of confidence (e.g., 95%, 99%), relative
error, and a measure of variability of the population in question.  Typically, a sample is collected and
the mean ( x ) and standard deviation (s) are calculated. Estimates of x and s from populations
thought to be similar may also be used.  However, if that assumption is incorrect, many more or far
fewer samples than necessary may be collected.  Sample size then is (Snedecor and Cochran
1989:52):

2

2
2

L
stn = . (4)

Values for t are:

Confidence level
70% 80% 90% 95% 99%

t 1.036 1.282 1.645 1.960 2.576

Example 6.1–A sample of 10 age-3 fish has the following lengths (inches):
2.3, 4.1, 3.9, 3.7, 3.0, 2.5, 3.0, 2.7, 2.9, 3.0.  The mean length from the
sample is 3.1 and the standard deviation is 2.4.  We wish to sample enough
fish to achieve precision ±25% of the mean with 95% certainty.

The first variable estimated is L, our relative error:

L = =31 0 25 0 775. * . .

Sample size then is:

8.36
775.0

4.296.1 2

2
2 ==n

Thus, a minimum of 37 age-3 fish should be measured.
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An investigator may also wish to determine what fraction of a sample falls into some classification
(e.g., percent males).  This follows a binomial distribution where P is the fraction of a sample in one
category and Q the fraction in the alternative category.  Thus,

n
nP 1= , (5)

and

PQ −=1 , (6)

where, n1 is the count of individuals in the first category.  As with continuous variables, measures of
variability can be determined for P and Q.  The standard deviation (s):

PQs = , (7)

and standard error ( xs ) :

n
PQsx = , (8)

may both be calculated (Ferguson 1976:156).  Similarly, confidence intervals can also be computed
for P and Q.  Sample size (n) and P control confidence interval coverage.  That is, the standard error
gets smaller as sample size increases or P deviates from 0.5.  The reduction in standard error due to P
is greatest when P>0.70 or P<0.30, with minimal change occurring for P between 0.30 and 0.70.
Examples of confidence interval coverage for several different values of P and n are given in the
following table:

n P Q 1 Standard error 2 Standard errors

20 0.20 0.80 ±8.9% ±17.8%
20 0.50 0.50 ±11.2% ±22.4%
50 0.20 0.80 ±5.7% ±11.4%
50 0.50 0.50 ±7.1% ±14.2%

100 0.20 0.80 ±4.0% ±8.0%
100 0.50 0.50 ±5.0% ±10.0%
500 0.20 0.80 ±1.8% ±3.6%
500 0.50 0.50 ±2.2% ±4.4%

Estimating sample size to determine if some fraction of a population is at a chosen level with given
certainty follows (Cochran 1977:72):

2)100*(
)100*)(100*)(4(

α
QPn = , (9)

where, α is 1 – the chosen level of certainty.
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6.2 Power

Another measure of data precision and reliability is power.  Precision and power measure the
probability of correctly concluding a hypothesis given a data set.  Commonly, we express the null
hypothesis as the sample mean of population A is not different than the sample mean of population B.
Conversely, we express the alternate hypothesis as the sample means of populations A and B do in
fact differ.  Two types of statistical error apply to these outcomes, Type I and Type II.  A Type I error
is the probability of falsely concluding a significant difference exists when in fact there is no
difference.  Type I error is denoted as α (alpha).  For example, we compare two samples using a t-
test.  Our results indicate that we are 95% certain that these samples, and the populations from which
they were taken, are different; or there is only a 5% chance that they are not different.  The
probability that we have made a Type I error is 5% (α=0.05).  If a Type I error is made, a treatment,
method, etc. will be accepted and “wrongly” used.  We may, for example, accept that some type of
stream improvement increases survival of trout.  While continuing to use this treatment may not have
a negative effect, time and money are being spent on a treatment that has no effect.  The cost of
making a Type I error in this example is measured in time and money.

But if we show no difference between samples, what is the probability we are wrong?  Type II error is
measured by β (beta) and is the probability of concluding there is no difference when a difference
does indeed exist.  Power is 1-β.  Power analysis then, provides an investigator with an estimate of
sample size necessary to detect some anticipated outcome.  If a Type II error is made, a treatment,
method, etc. will not be accepted and may not be used.  Using our stream improvement example, if no
increase in survival of trout is shown the method will be rejected.  The result of making a Type II
error in this situation is an opportunity cost.  That is, the opportunity to use a method that has
benefits.  While statistical confidence of differences (α) is routinely reported, power is rarely
reported.

For decisions to be useful, an appropriate sample size must be taken.  When sample sizes are too
small, significant differences are rarely found and a treatment or method may be discarded when it
may in fact be useful (Type II error occurs).  Conversely, sample sizes which are larger than
necessary, are not cost effective.

Numerous statistical methods for power analysis exist and presenting a complete review is beyond the
scope of this chapter.  (Commercial software packages are available for power analysis and

Example 6.2–Trout are fin clipped and placed in a raceway prior to
stocking.  The hatchery manager wants to be 95% certain that at least
90% of all trout are properly fin clipped.  How many fish should be
randomly sampled?

n =
−

( )( . * )( . * )
[( . ) * ]

4 0 90 100 010 100
1 0 95 100 2

=
( )( )( )

[ ]
4 90 10

5 2

144=

Thus, a minimum of 144 fish must be randomly selected to determine if
at least 90% of the fish in the raceway are properly clipped.
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suggestions are given at the end of this section.)  However, methods for comparing samples collected
from different periods or locations using a t-test are covered in this chapter.

To perform an a priori power analysis on data that will be evaluated using a t-test, some preliminary
estimates of population characteristics ( x and s) are necessary, as well as an estimate of anticipated
change to the population.  We may, for example, anticipate an increase in mean length at age of some
fish species following some management technique (e.g., introduction of a predator to thin a bluegill
population that is believed to be stunted due to overcrowding).

Several assumptions must be met to accurately measure power using the t-test:

1. Data are approximately normal;
2. Variances of both populations (before and after treatment periods, etc.) are equal;
3. The two populations are independent (that is one group, time period, etc. is not influencing the

other);
4. Samples have been randomly selected and accurately represent their respective populations.

Numerous texts discuss power analysis methods, such as Dixon and Massey (1957) and Cohen
(1988).  Equations presented below were derived from Cohen (1988) and presented in Hintz
(1996:59).  The methods presented are for directional change (one-tailed test), because we typically
expect to see a benefit due to a management action.  This benefit could be an increase or decrease in
the variable depending on the situation.  For example, benefits might be increased abundance of trout,
or decrease abundance of sea lamprey.  One-tailed tests have greater power than two-tailed tests with
equivalent sample sizes because we are focusing on only positive changes.

Power analysis for a one-tailed t-test is done in the following manner.  First, calculate standard
deviation (s) from a preliminary sample s1 following equation (1).  Next, calculate pooled standard
error of x using an estimate of before (n1) and after (n2) sample size:

21
1

11
nn

ssx += . (10)

Note that s1 is assumed to be equivalent to standard deviation s2  during the second period (or
location).  The measure of variability ( xs ) and the anticipated change (d) are then standardized
following a normal distribution:

x

x
p s

dsZ
Z

−
= α , (11)

where αZ  is the Z value from Table 1 at the chosen confidence level α (Area column).  Power then is
estimated as:

β−=1power , (12)

where β is the area value opposite the Z value (substituting Zp for Z) from Table 1.  Several iterations
using different values for n1 and n2 may be necessary to establish acceptable sample sizes.

There are no set values for α or β.  Traditionally, α=0.05 has been used for natural resource data
because we generally feel that falsely concluding one method is better than another would be a
substantial problem.  β equal to 0.20 or less may be a reasonable level of certainty for protection
against Type II errors where rejection of a treatment or method does not have severe consequences.
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Example 6.3–Walleye are to be introduced in a lake having a stunted
bluegill population.  A trap net sample of 32 bluegill yielded a mean
length of 6.4 inches with a standard deviation of 1.01.  The goal of the
project is to increase the average length of bluegill, sampled by trap net,
to 7.0 inches.  The manager wishes to be 95% certain that a Type I error
has not occurred (α=0.05).  To be certain that an effective treatment
opportunity is not missed, 95% power that a Type II error (β=0.05) has
not occurred is chosen.  How many samples should be collected?

Starting with 32 fish before and 32 fish after:

2525.0
32
1

32
101.1 =+=xs ,

7312.0
)2525.0(

)6.0()2525.0)(645.1( −=−=pZ .

Using Table 6.1, read under Z column to find a value as close to –0.7312
as possible, use –0.7388, then across to the right in the “Area” column
find value 0.23 (β):

power = 1-0.23 = 0.77

Since we selected a power of 95%, more samples are required.  Next try
50 before and 50 after samples:

2020.0
50
1

50
101.1 =+=xS ,

3253.1
)2020.0(

)6.0()2020.0)(645.1( −=−=pZ ,

β = 0.09 and power = 0.91

Next try 65 before and 65 after samples:

1772.0
65
1

65
101.1 =+=xS ,

7410.1
)1772.0(

)3.1()1772.0)(645.1( −=−=pZ ,

β = 0.04 and power = 0.96

By sampling 32 fish before and 32 fish after, we may not be able to show
a difference in mean length when in fact a difference may exist.  By
roughly doubling our sample to 65 fish before and 65 fish after,
power=0.96 and the risk of making a Type II error is minimal.
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Currently, the State does not have power analysis software on contract.  However, Pass 6.0 is being
used at the Institute for Fisheries Research, and is quite easy to use and does not require a systems
administrator to install.  Power estimates using Pass 6.0 may be done for a variety of parametric and
nonparametric statistical tests.  These include: t-test on one mean, t-test on two means, one-way
ANOVA, fixed effects ANOVA, randomized block ANOVA, repeated measures ANOVA,
bioequivalence-means, log-rank survival test, one proportion, two proportions, Fishers exact test,
bioequivalence-proportions, matched case/control, one correlation, two correlations, multiple
regression, and logistic regression.  Trial copies of Pass are currently available on their web site
(http://www.ncss.com/) and are good for 30 days.

6.3 Length-weight bias

Length-weight regressions are often used to estimate the weight of fish from their length. Similarly,
length of fish may be estimated from their weight.  These regression equations generally follow the
form:

)(logloglog WbaL += , (13)

for estimation of length L from weight W and:

)(logloglog LbaW += , (14)

Example 6.4–Sample sizes (e.g., before and after) may not always be
equal.  Once a sample has been collected, additional data may not be
available for collection during a given time period or at a location.  Using
the data from Example 3, suppose the collection of 32 fish during our
before period cannot be changed because no additional fish can be
measured.  How many fish must be collected following the introduction
of walleye to detect an increase in the average length of bluegill to 7.0
inches?  Again, the before period mean is 6.4 inches with standard
deviation 1.01, α=0.05 and β=0.05.

This time start with 32 fish before and 300 fish after:

1878.0
300
1

32
101.1 =+=xS ,

5499.1
)1878.0(

)6.0()1878.0)(645.1( −=−=pZ ,

β = 0.06 and power = 0.94.

Substantially more fish need to be sampled during the after period to
detect our anticipated 0.6 inch increase in average length.  Approximately
600 bluegill need to be measured during the after period:

1832.0
600
1

32
101.1 =+=xS ,

6301.1
)1832.0(

)6.0()1832.0)(645.1( −=−=pZ ,

β = 0.05 and power = 0.95.

http://www.ncss.com/
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for estimation of weight from length.  For either equation, a is the intercept and b the slope of the
line.  Equations (13) and (14) may also be written as:

baWL = , (15)

and
baLW = . (16)

When large numbers of fish are processed, individual lengths are seldom taken and mean length L  is
estimated from bulk weights using mean weight W .  Substitution of L  for L and W  for W in
equation (15) produces a biased estimate of L  (Nielsen and Schoch 1980).

For estimation of L using equation (15), b is usually about 1/3 and length is overestimated by about
2.5%, but may be greater depending on the range of fish lengths in the sample.  Predicted W from
equation (16) is underestimated by about 10% when b is around 3, but may also be greater depending
on the sample.  This under- or overestimation is due to the non-linear relationship between length and
weight.  As b deviates from 1 (when the relationship is linear), under- or overestimation occurs.
While this current discussion relates to length and weight only, bias will occur for any power
relationships – such as mean length and mean fecundity of female fish.  (Note: Do not confuse power
relationship with statistical power in previous section – they are entirely different.)  The high bias
associated with equation (15) is troublesome when the calculated mean length of hatchery-reared fish
at the raceway differ from observed mean lengths at the stocking site.

To compensate for bias associated with prediction of mean length from mean weight in a hatchery
setting, the following procedure is suggested.

1. Prior to removing fish from a raceway for planting, obtain a sample of 150-200 fish, and measure
their individual lengths and weights.  From this sample, compute mean length, mean weight, and a
weight-length regression specific to that raceway.

2. Using that raceway-specific regression, calculate the predicted mean length based on the mean
weight determined in #1.  The predicted mean length will be slightly larger than the actual mean
length calculated in #1.  This difference (expressed as a percentage) will be used to adjust
predicted mean lengths planted.

3. During the planting operation, for each group of fish cut off from the rest of the raceway, obtain 5
subsamples (each about 100 fish) for weighing and counting.  Subsample each time a portion of
the raceway is segregated. (Based on samples from the Harrietta Hatchery, this should give you an
average number of fish per kilogram±1.5 fish [95% confidence level]).

4. To compute the mean length of fish being planted, insert the mean weight, calculated in #3, into
the weight-length regression.  The predicted length is then reduced by the percentage determined
in #2.

Similar procedures could be used to estimate mean weights from mean lengths of fish.
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Example 6.5–A sample of 20 hatchery fish yield the following length
(inches) and weight (grams) values (note this is less than the
recommended sample of 150-200 and is done so for demonstration
purposes):

Length Weight
3.0 15.0
3.1 29.7
4.6 99.3
4.7 113.8
5.7 200.0
5.9 205.3
6.0 206.0
6.1 236.9
6.9 348.5
3.6 46.6
3.8 54.8
3.9 59.3
4.5 91.1
4.7 103.8
4.8 110.5
4.9 117.6
5.0 125.0
6.0 216.0
6.8 314.4
6.9 328.5

Step 1 – Enter length weight data into SPSS (9.0.0) and calculate average
length and weight using “Analyze  Descriptive statistics   Descriptives”.
Average length is 5.0450 and average weight 151.1400.  Output will
appear similar to:

Descriptive Statistics
N Mean

LENGTH 20 5.0450
WEIGHT 20 151.1400
Valid N (listwise) 20

Next calculate length weight regression using “Analyze Regression Curve
estimation”.  Length is the dependent variable and weight the
independent.  For models check “Power”.  Output similar to the following
should appear:
MODEL: MOD_9.
_

Dependent variable.. LENGTH Method.. POWER

Listwise Deletion of Missing Data

Multiple R .98928
R Square .97867
Adjusted R Square .97748
Standard Error .03782

Analysis of Variance:

DF Sum of Squares Mean Square

Regression 1 1.1809908 1.1809908
Residuals 18 .0257447 .0014303

F = 825.71570 Signif F = .0000

------------------- Variables in the Equation ------------------

Variable B SE B Beta T Sig T

WEIGHT .300109 .010444 .989275 28.735 .0000
(Constant) 1.177706 .059277 19.868 .0000
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Example 6.5–continued.

Reading under “Variables in the Equation” find 0.300109 and 1.177706
(both are in bold type).  Substituting in our length-weight regression,
a=1.177706, b=0.300109 and mean weight from above descriptive
statistics:

3099.5)1400.151(177706.1 300109.0 =⋅=L

We now have:

Observed mean length = 5.0450
Observed mean weight = 151.1400
Predicted mean length = 5.3099

Step 2 – Calculate correction factor:

0525.1
0450.5
3099.5 ==correction

Step 3 – Each time fish are to be removed from a raceway and planted,
collect 5 samples of 100 fish. Calculate the average weight from these 5
samples.  This step is repeated each time that a raceway is segregated for
removal of fish.

Step 4 – Estimate mean length using regression equation from Step 1 and
correction factor from Step 2:

0525.1
177706.1 300109.0Wlength  mean  corrected ⋅=
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Table 6.1.–Areas of the normal distribution.  Table values were taken from Remington and Schork
(1970).

z Area z Area z Area

-2.3290 0.01 -0.4125 0.34 0.4399 0.67
-2.0540 0.02 -0.3853 0.35 0.4677 0.68
-1.8810 0.03 -0.3585 0.36 0.4959 0.69
-1.7510 0.04 -0.3319 0.37 0.5244 0.70
-1.6450 0.05 -0.3055 0.38 0.5534 0.71
-1.5550 0.06 -0.2793 0.39 0.5828 0.72
-1.4760 0.07 -0.2533 0.40 0.6128 0.73
-1.4050 0.08 -0.2275 0.41 0.6433 0.74
-1.3410 0.09 -0.2019 0.42 0.6745 0.75
-1.2820 0.10 -0.1764 0.43 0.7063 0.76
-1.2270 0.11 -0.1510 0.44 0.7388 0.77
-1.1750 0.12 -0.1257 0.45 0.7722 0.78
-1.1264 0.13 -0.1004 0.46 0.8064 0.79
-1.0800 0.14 -0.0753 0.47 0.8416 0.80
-1.0360 0.15 -0.0502 0.48 0.8779 0.81
-0.9945 0.16 -0.0251 0.49 0.9154 0.82
-0.9542 0.17 0.0000 0.50 0.9542 0.83
-0.9154 0.18 0.0251 0.51 0.9945 0.84
-0.8779 0.19 0.0502 0.52 1.0360 0.85
-0.8416 0.20 0.0753 0.53 1.0800 0.86
-0.8064 0.21 0.1004 0.54 1.1264 0.87
-0.7722 0.22 0.1257 0.55 1.1750 0.88
-0.7388 0.23 0.1510 0.56 1.2270 0.89
-0.7063 0.24 0.1764 0.57 1.2820 0.90
-0.6745 0.25 0.2019 0.58 1.3410 0.91
-0.6433 0.26 0.2275 0.59 1.4050 0.92
-0.6128 0.27 0.2533 0.60 1.4760 0.93
-0.5828 0.28 0.2793 0.61 1.5550 0.94
-0.5534 0.29 0.3055 0.62 1.6450 0.95
-0.5244 0.30 0.3319 0.63 1.7510 0.96
-0.4959 0.31 0.3585 0.64 1.8810 0.97
-0.4677 0.32 0.3853 0.65 2.0540 0.98
-0.4399 0.33 0.4125 0.66 2.3290 0.99
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